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High performance scientific computing using Julia

1. Basics and motivation
Why would you want to choose Julia for your next project?
Language primer and some distinctive features.
Starting now, 45 minutes, followed by short Q&A and break (15 minutes)

2. Scientific data processing
Tables, matrices, plots, files, …
Start at 14:00 (UTC+02:00), 45 minutes, followed by Q&A + break

3. Scaling your algorithms up
HPC, parallelization and distributed processing
Start at 15:00 (UTC+02:00), 45 minutes, followed by Q&A, possibly
problem-solving session
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Let’s start with some motivation



Wikipedia: Julia is a high-level, high-performance, dynamic
programming language. While it is a general-purpose lan-
guage and can be used to write any application, many of its
features are well suited for numerical analysis and compu-
tational science. Distinctive aspects of Julia’s design include
a type system with parametric polymorphism in a dynamic
programming language; with multiple dispatch as its core
programming paradigm. Julia supports…

...but why?



The main distinctive features

Julia produces efficient programs.
Code is compiled to optimized machine
representation before being executed.
That means that your programs run very
fast, you produce more results&insight
in less time, and consume less energy.

The code is still very high-level.
You don’t need to care about technical
details as in other compiled languages.
Most programs feel like in the usual
scripting languages.

The ecosystem has a lot of goodies.
A great interpreter, easy distributed
programming, wonderful modern
packaging system, Jupyter notebooks.



Where does performance come from?

Program performance can be predicted quite precisely:

• Programs are evaluated by CPUs
• CPUs can hold a few numbers and execute instructions that modify them:

• simple math
• load a number from RAM, save a number to RAM
• …

• All instructions are predictably fast
• adding 2 numbers usually takes 1 CPU cycle — in 2021, that’s around 0.3ns
• load/save takes a few cycles (from CPU cache) to 100’s of cycles (from main memory)

Less instructions (and better cache utilization) translates to a faster program.
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How to lose and save performance?

Python/R:
a+1

…

How many instructions does this take?
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…with static types

Computer:
1. Check if a exists in the available variables

2. Find address of a

3. Check if a is an actual object or null

4. Find if there is __add__ in the object, get its address

5. Find if __add__ is a function with 2 parameters

6. Load the value of a

7. Call the function, push Python call stack

8. Find if 1 is an integer and can be added

9. Check if a has a primitive representation (ie. not a big-int)

10. Run the primitive addition instruction (1 cycle!)

11. Pop Python call stack

12. Save the result to the place where Python can work with it
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How to lose and save performance?

Python/R:
a+1

…with some compiler optimizations

Computer:
1. Check if a exists in the available variables

2. Find address of a

3. Check if a is an actual object or null

4. Find if there is __add__ in the object, get its address

5. Find if __add__ is a function with 2 parameters

6. Load the value of a

7. Call the function, push Python call stack

8. Find if 1 is an integer and can be added
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Efficient = Fast



So how do I write efficient code?

Python / R
• Import a library written in another language

• Do not touch the data directly

• Only use library-defined API calls

import numpy as np

a = np.matrix([[1,2,3], [2,3,4], ...])
b = np.matrix([[2,3,4], ...])
c = np.matrix(

np.array(a)*
np.array(b))

• A precompiled, typed, partially staticized language

• Syntactic tools to make array processing easy

• Manual work with data is not slow

a = [ 1 2 3; 2 3 4; ...]
b = [ 2 3 4; ...]
c = a .* b

Same performance:

c = zeros(size(a))
for i = 1:size(a, 1)

for j = 1:size(a, 2)
c[i,j] = a[i,j] * b[i,j]

end
end
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A canonical use-case

Let’s find if some sequences align well!

Catch: We’re scientists, we will very likely need to
use a novel algorithm.

What if I try another language?
• C speedup: ≤1.5×
• R/Python slowdown: ≥50×
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Wikipedia: Levenshtein distance pseudocode
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end
for i = 1:n

d[1,i+1] = i
end
for i = 1:m

for j = 1:n
substCost = s[i]==t[i] ? 0 : 1
d[i+1, j+1] =

min(d[i, j+1] + 1,
d[i+1, j] + 1,
d[i, j] + substCost)

end
end
return d
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julia> levenshteinMatrix(collect("kitten"), collect("sitting"))
7×8 Array{Int64,2}:
0 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 2 1 2 3 4 5 6
3 3 2 1 2 3 4 5
4 4 3 2 1 2 3 4
5 5 4 3 2 2 3 4
6 6 5 4 3 3 2 3



s i t t i n g
0 1 2 3 4 5 6 7

k 1 1 2 3 4 5 6 7
i 2 2 1 2 3 4 5 6
t 3 3 2 1 2 3 4 5
t 4 4 3 2 1 2 3 4
e 5 5 4 3 2 2 3 4
n 6 6 5 4 3 3 2 3



Starting up



Installation

Julia is available for most operating systems.
(We work regularly on Linuxes, Macs and Windows.)

• Linux:
• apt-get install julia
• pacman install julia
• emerge julia
• …

• Mac&Windows: download from julialang.org



REPL



REPL special modes

Extra function hotkey example

Package management ] add SomePackage

Shell commands ; ls results/

Help ? collect

Completion Tab is…?



Basic language and syntax



Variables and expressions

Python

a = b + 123 / c

R

a <- b + 123 / c

a = b + 123 / c



Printing out values

Python
print(123)
print("Hello!")
a = 23
print("A is now %d, twice A is %d"%(a, 2*a))

R
print(123)
print("Hello!")
a <- 23
print(paste0("A is now ", a, ", twice A is" , a*2))

println(123)
println("Hello!")
a = 23
println("A is now $a, twice A is $(a*2)")

# or do it manually:
println("A is now " * string(a) *

", twice A is " * string(2*a))



Useful macros

@info "We're progressing!" a

…prints out:

┌ Info: We're progressing!
└ a = 23

@warn "Oh no, something looks bad" a

…prints out:

┌ Warning: Oh no, something looks bad
│ a = 23
└ @ Main REPL[3]:1



Structured data

• Tuples
(1, 5.23, "test")

• Named tuples
(x=1, y=5.23, name="test")

• Structures
struct MyData
x
y
name

end
• Constructors and accessors

a = MyData(2,3,"item")
a.x, a.name, ...
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Arrays

vec = [1,2,3,4,5]
mtx = [1 2 3; 4 5 6; 0 0.123 0]

julia> mtx
3×3 Array{Float64,2}:
1.0 2.0 3.0
4.0 5.0 6.0
0.0 0.123 0.0



Arrays
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julia> mtx
3×3 Array{Float64,2}:
1.0 2.0 3.0
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Arrays

vec = [1,2,3,4,5]
mtx = [1 2 3; 4 5 6; 0 0.123 0]

julia> mtx * mtx
3×3 Array{Float64,2}:
9.0 12.369 15.0
24.0 33.738 42.0
0.492 0.615 0.738



Arrays

vec = [1,2,3,4,5]
mtx = [1 2 3; 4 5 6; 0 0.123 0]

julia> mtx .* mtx
3×3 Array{Float64,2}:
1.0 4.0 9.0
16.0 25.0 36.0
0.0 0.015129 0.0



Arrays

vec = [1,2,3,4,5]
mtx = [1 2 3; 4 5 6; 0 0.123 0]

julia> vec[2]
2



Arrays

vec = [1,2,3,4,5]
mtx = [1 2 3; 4 5 6; 0 0.123 0]

julia> mtx[2,:]
3-element Array{Float64,1}:
4.0
5.0
6.0



Arrays

vec = [1,2,3,4,5]
mtx = [1 2 3; 4 5 6; 0 0.123 0]

julia> mtx[:,2:3]
3×2 ArrayFloat64,2:
2.0 3.0
5.0 6.0
0.123 0.0



Arrays

vec = [1,2,3,4,5]
mtx = [1 2 3; 4 5 6; 0 0.123 0]

julia> mtx[:,2]' * mtx[2,:]
33.738



Control structures — conditionals

Python

if a>=1:
print("okay")

else:
a = 1

R

if(a>=1)
print("okay")

else
a <- 1

if a>=1
println("okay")

else
a = 1

end

# same:
if a>=1 println("okay")
else a = 1 end



Control structures — loops

Python

for i in range(10):
print(i)

R

for(i in 1:10) print(i)

for i in 1:10
println(i)

end

# vectorized syntax:
println.(1:10);



Control structures — more loops

Python

while i<5:
i += 1

R

while (i<5)
i <- i+1

while i<5
i += 1

end



Function definitions

Python

def myFunction(x, y)
z = 2*x*y
return (x+y+z)/3

R

myFunction <- function(x, y) {
z <- 2*x*y
(x+y+z)/3

}

function myFunction(x, y)
z = 2*x*y
return (x+y+z)/3

end



Function definitions
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z = 2*x*y
return (x+y+z)/3

R

myFunction <- function(x, y) {
z <- 2*x*y
(x+y+z)/3

}
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z = 2*x*y
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end

# shorter syntax:
myFunction(x, y) = (x+y+2*x*y)/3



Function definitions

Python

def myFunction(x, y)
z = 2*x*y
return (x+y+z)/3

R

myFunction <- function(x, y) {
z <- 2*x*y
(x+y+z)/3

}

function myFunction(
x::Number, y::Number)
z = 2*x*y
return (x+y+z)/3

end



Array machinery

Generating ranges with colons:

1:10 == [1, 2, 3, ..., 10] # total 10
1:0.2:10 == [1, 1.2, 1.4, ..., 10] # total 46

Generating arrays:

[a^2 for a = 1:10] == [1, 4, 9, 16, ..., 100]

…also zeros, ones, fill, rand, randn, size, length, cat, …

Broadcasting over arrays:

1 .+ [1,2,3] == [2,3,4]
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Array machinery

julia> vcat([1,2], [3,4])
4-element Array{Int64,1}:
1
2
3
4

julia> hcat([1,2], [3,4])
2×2 Array{Int64,2}:
1 3
2 4

julia> a=[fill(i, (2,2)) for i in 1:5]
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Array machinery

julia> vcat([1,2], [3,4])
4-element Array{Int64,1}:
1
2
3
4

julia> hcat([1,2], [3,4])
2×2 Array{Int64,2}:
1 3
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julia> a=[fill(i, (2,2)) for i in 1:5]
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1 1 2 2 3 3 4 4 5 5
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Array machinery

julia> vcat([1,2], [3,4])
4-element Array{Int64,1}:
1
2
3
4

julia> hcat([1,2], [3,4])
2×2 Array{Int64,2}:
1 3
2 4

julia> a=[fill(i, (2,2)) for i in 1:5]
julia> vcat(a...)
10×2 Array{Int64,2}:
1 1
1 1
2 2
2 2
3 3
3 3
4 4
4 4
5 5
5 5



Array machinery

julia> vcat([1,2], [3,4])
4-element Array{Int64,1}:
1
2
3
4

julia> hcat([1,2], [3,4])
2×2 Array{Int64,2}:
1 3
2 4

julia> a=[fill(i, (2,2)) for i in 1:5]
julia> cat(dims=3, a...)
2×2×5 Array{Int64,3}:
[:, :, 1] =
1 1
1 1

[:, :, 2] =
2 2
2 2

...



Broadcasting over arrays

function.(array)
== broadcast(function, array)
== [function(a) for a in array] # !

• Works with almost any function and operator
.+ .* ./ .+= .= .== .>= …

• Makes the ‘trivial’ code much shorter (and less error-prone)
• Allows the compiler to reorder and parallelize the execution
• Often prevents creation of temporary arrays



Tricky question

What is the difference between

exp.(sin.(randn(10000000)))

and

[exp(x) for x in [sin(x) for x in randn(10000000)]]

?



Useful collection datatypes

• Keyed collections: Dict("a"=>5, "b"=>3)
Dict{String,Int64} with 2 entries:
"b" => 3
"a" => 5

• Unique sets: Set(["hello","hola","hello","ahoj","bonjour"])
Set{String} with 4 elements:
"hola"
"hello"
"ahoj"
"bonjour"



Goodies!



Installing and using a package from the REPL

julia> using Pkg
julia> Pkg.add("Plots")

Shortcut with ]:

] add Plots

Loading the package:

julia> using Plots

julia> x=1:0.1:100

julia> @time plot(x, sin.(x) .* sin.(0.3 * x))
4.599794 seconds (9.56 M allocations: 487.551 MiB, 3.02% gc time)

julia> @time plot(x, sin.(x) .* sin.(0.3 * x))
0.001081 seconds (10.38 k allocations: 314.336 KiB)
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julia> @time plot(x, sin.(x) .* sin.(0.3 * x))
0.001081 seconds (10.38 k allocations: 314.336 KiB)



Tricky question

Why was the first plot call so slow?



Trickier question

Why 3*1:10 works but 3*[1,2,3] fails?



Benchmark everything!

julia> @time randn(10000,1000) * randn(1000,10000)
4.287222 seconds (25 allocations: 915.547 MiB, 1.88% gc time)

julia> @time randn(10000,1000) * randn(1000,10000)
4.105074 seconds (6 allocations: 915.528 MiB, 0.13% gc time)

julia> @time randn(1000,10000) * randn(10000,1000)
0.451203 seconds (6 allocations: 160.218 MiB)



Benchmark everything!

julia> @time randn(10000,1000) * randn(1000,10000)
4.287222 seconds (25 allocations: 915.547 MiB, 1.88% gc time)

julia> @time randn(10000,1000) * randn(1000,10000)
4.105074 seconds (6 allocations: 915.528 MiB, 0.13% gc time)

julia> @time randn(1000,10000) * randn(10000,1000)
0.451203 seconds (6 allocations: 160.218 MiB)



Benchmark everything!

julia> @time randn(10000,1000) * randn(1000,10000)
4.287222 seconds (25 allocations: 915.547 MiB, 1.88% gc time)

julia> @time randn(10000,1000) * randn(1000,10000)
4.105074 seconds (6 allocations: 915.528 MiB, 0.13% gc time)

julia> @time randn(1000,10000) * randn(10000,1000)
0.451203 seconds (6 allocations: 160.218 MiB)



Make a UNIXy executable command-line tool

using FileProcessor

if isempty(ARGS)
@warn "No arguments, doing nothing!"

end

t = @timed for fn in ARGS
@info "Processing file $fn"
process_file(fn)

end

@info "Processing took $(t.time)s"

In console:
$ julia prog.jl file1.csv file2.csv

[ Info: Processing file file1.csv
[ Info: Processing file file2.csv
[ Info: Processing took 0.054464386s
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End of session 1

Q&A?
Takeaways:

• Julia is similar to many other languages, learning curve is very gentle

• Julia code is efficient by default

• Array broadcasting is a great way to write nice and fast code
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